Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.341
Filtrar
1.
Oncol Res ; 32(4): 691-702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560565

RESUMO

Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis. Immunotherapy has shown great potential in the treatment of osteosarcoma. However, the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment. The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment. Here, we prepared a dual pH-sensitive nanocarrier, loaded with the photosensitizer Chlorin e6 (Ce6) and CD47 monoclonal antibodies (aCD47), to deliver synergistic photodynamic and immunotherapy of osteosarcoma. On laser irradiation, Ce6 can generate reactive oxygen species (ROS) to kill cancer cells directly and induces immunogenic tumor cell death (ICD), which further facilitates the dendritic cell maturation induced by blockade of CD47 by aCD47. Moreover, both calreticulin released during ICD and CD47 blockade can accelerate phagocytosis of tumor cells by macrophages, promote antigen presentation, and eventually induce T lymphocyte-mediated antitumor immunity. Overall, the dual pH-sensitive nanodrug loaded with Ce6 and aCD47 showed excellent immune-activating and anti-tumor effects in osteosarcoma, which may lay the theoretical foundation for a novel combination model of osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , Clorofilídeos , Nanopartículas , Neoplasias , Osteossarcoma , Fotoquimioterapia , Humanos , Antígeno CD47 , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Imunoterapia , Neoplasias Ósseas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Microambiente Tumoral
2.
J Nanobiotechnology ; 22(1): 141, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561739

RESUMO

Osteosarcoma (OS) is an aggressive bone tumor with strong invasiveness, rapid metastasis, and dreadful mortality. Chemotherapy is a commonly used approach for OS treatment but is limited by the development of drug resistance and long-term adverse effects. To date, OS still lacks the curative treatment. Herein, we fabricated pyrite-based nanoparticles (FeS2@CP NPs) as synergetic therapeutic platform by integrating photothermal therapy (PTT) and chemo-dynamic therapy (CDT) into one system. The synthetic FeS2@CP NPs showed superior Fenton reaction catalytic activity. FeS2@CP NPs-based CDT efficaciously eradicated the tumor cells by initiating dual-effect of killing of apoptosis and ferroptosis. Furthermore, the generated heat from FeS2@CP under near-infrared region II (NIR-II) laser irradiation could not only inhibit tumor's growth, but also promote tumor cell apoptosis and ferroptosis by accelerating •OH production and GSH depletion. Finally, the photothermal/NIR II-enhanced CDT synergistic therapy showed excellent osteosarcoma treatment effects both in vitro and in vivo with negligible side effects. Overall, this work provided a high-performance and multifunctional Fenton catalyst for osteosarcoma synergistic therapy, which provided a pathway for the clinical application of PTT augmented CDT.


Assuntos
Neoplasias Ósseas , Nanopartículas , Neoplasias , Osteossarcoma , Sulfetos , Humanos , Terapia Fototérmica , Osteossarcoma/tratamento farmacológico , Ferro , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Peróxido de Hidrogênio
3.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612399

RESUMO

Osteosarcoma, which has poor prognosis after metastasis, is the most common type of bone cancer in children and adolescents. Therefore, plant-derived bioactive compounds are being actively developed for cancer therapy. Artemisia apiacea Hance ex Walp. is a traditional medicinal plant native to Eastern Asia, including China, Japan, and Korea. Vitexicarpin (Vitex), derived from A. apiacea, has demonstrated analgesic, anti-inflammatory, antitumour, and immunoregulatory properties; however, there are no published studies on Vitex isolated from the aerial parts of A. apiacea. Thus, this study aimed to evaluate the antitumour activity of Vitex against human osteosarcoma cells. In the present study, Vitex (>99% purity) isolated from A. apiacea induced significant cell death in human osteosarcoma MG63 cells in a dose- and time-dependent manner; cell death was mediated by apoptosis, as evidenced by the appearance of cleaved-PARP, cleaved-caspase 3, anti-apoptotic proteins (Survivin and Bcl-2), pro-apoptotic proteins (Bax), and cell cycle-related proteins (Cyclin D1, Cdk4, and Cdk6). Additionally, a human phosphokinase array proteome profiler revealed that Vitex suppressed AKT-dependent downstream kinases. Further, Vitex reduced the phosphorylation of PRAS40, which is associated with autophagy and metastasis, induced autophagosome formation, and suppressed programmed cell death and necroptosis. Furthermore, Vitex induced antimetastatic activity by suppressing the migration and invasion of MMP13, which is the primary protease that degrades type I collagen for tumour-induced osteolysis in bone tissues and preferential metastasis sites. Taken together, our results suggest that Vitex is an attractive target for treating human osteosarcoma.


Assuntos
Neoplasias Ósseas , Flavonoides , Osteossarcoma , Humanos , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Osteossarcoma/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt
4.
Aging (Albany NY) ; 16(5): 4579-4590, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38428404

RESUMO

Osteosarcoma is a cancer originating in the bone cells, specifically in the osteoblasts. Previous studies mainly focused on particular molecules but the whole pathway network. We comprehensively analyzed the enrichment score of each signal pathway and identified a novel classification by 20 machine learning algorithms. Furthermore, differences in tumor immune infiltration cells and drug sensitivity were compared in low and high groups. We identified a model consisting of four signaling pathways that predict the prognosis and the immune status of the tumor microenvironment and drug sensitivity in osteosarcoma patients. The novel classification may be used in clinical applications to predict prognosis and drug sensitivity.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteoblastos , Prognóstico , Algoritmos , Microambiente Tumoral/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética
5.
J Immunother Cancer ; 12(3)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38519053

RESUMO

BACKGROUND: The survival benefit observed in children with neuroblastoma (NB) and minimal residual disease who received treatment with anti-GD2 monoclonal antibodies prompted our investigation into the safety and potential clinical benefits of anti-CD3×anti-GD2 bispecific antibody (GD2Bi) armed T cells (GD2BATs). Preclinical studies demonstrated the high cytotoxicity of GD2BATs against GD2+cell lines, leading to the initiation of a phase I/II study in recurrent/refractory patients. METHODS: The 3+3 dose escalation phase I study (NCT02173093) encompassed nine evaluable patients with NB (n=5), osteosarcoma (n=3), and desmoplastic small round cell tumors (n=1). Patients received twice-weekly infusions of GD2BATs at 40, 80, or 160×106 GD2BATs/kg/infusion complemented by daily interleukin-2 (300,000 IU/m2) and twice-weekly granulocyte macrophage colony-stimulating factor (250 µg/m2). The phase II segment focused on patients with NB at the dose 3 level of 160×106 GD2BATs/kg/infusion. RESULTS: Of the 12 patients enrolled, 9 completed therapy in phase I with no dose-limiting toxicities. Mild and manageable cytokine release syndrome occurred in all patients, presenting as grade 2-3 fevers/chills, headaches, and occasional hypotension up to 72 hours after GD2BAT infusions. GD2-antibody-associated pain was minimal. Median overall survival (OS) for phase I and the limited phase II was 18.0 and 31.2 months, respectively, with a combined OS of 21.1 months. A phase I NB patient had a complete bone marrow response with overall stable disease. In phase II, 10 of 12 patients were evaluable: 1 achieved partial response, and 3 showed clinical benefit with prolonged stable disease. Over 50% of evaluable patients exhibited augmented immune responses to GD2+targets post-GD2BATs, as indicated by interferon-gamma (IFN-γ) EliSpots, Th1 cytokines, and/or chemokines. CONCLUSIONS: This study demonstrated the safety of GD2BATs up to 160×106 cells/kg/infusion. Coupled with evidence of post-treatment endogenous immune responses, our findings support further investigation of GD2BATs in larger phase II clinical trials.


Assuntos
Antineoplásicos , Neuroblastoma , Osteossarcoma , Criança , Humanos , Linfócitos T/patologia , Neuroblastoma/patologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Osteossarcoma/tratamento farmacológico
6.
Int J Biol Macromol ; 264(Pt 2): 130729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460643

RESUMO

Astrocyte elevated gene-1 (AEG-1) oncogene is a notorious and evolving target in a variety of human malignancies including osteosarcoma. The RNA interference (RNAi) has been clinically proven to effectively knock down specific genes. To successfully implement RNAi in vivo, protective vectors are required not only to protect unstable siRNAs from degradation, but also to deliver siRNAs to target cells with controlled release. Here, we synthesized a Zein-poly(l-lysine) dendrons non-viral modular system that enables efficient siRNA-targeted AEG-1 gene silencing in osteosarcoma and encapsulation of antitumor drugs for controlled release. The rational design of the ZDP integrates the non-ionic and low immunogenicity of Zein and the positive charge of the poly(l-lysine) dendrons (DPLL) to encapsulate siRNA and doxorubicin (DOX) payloads via electrostatic complexes and achieve pH-controlled release in a lysosomal acidic microenvironment. Nanocomplexes-directed delivery greatly improves siRNA stability, uptake, and AEG-1 sequence-specific knockdown in 143B cells, with transfection efficiencies comparable to those of commercial lipofectamine but with lower cytotoxicity. This AEG-1-focused RNAi therapy supplemented with chemotherapy inhibited, and was effective in inhibiting the growth in of osteosarcoma xenografts mouse models. The combination therapy is an alternative or combinatorial strategy that can produce durable inhibitory responses in osteosarcoma patients.


Assuntos
Neoplasias Ósseas , Dendrímeros , Nanopartículas , Osteossarcoma , Zeína , Animais , Camundongos , Humanos , Polilisina , Azidas , Preparações de Ação Retardada , Alcinos , Doxorrubicina/farmacologia , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , RNA Interferente Pequeno/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Microambiente Tumoral
7.
J Tradit Chin Med ; 44(2): 251-259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504531

RESUMO

OBJECTIVE: To investigate the synergistic effects of polyphyllin I (PPI) combined with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on the growth of osteosarcoma cells through downregulating the Wnt/ß-catenin signaling pathway. METHODS: Cell viability, apoptosis and cell cycle distribution were examined using cell counting kit-8 and flow cytometry assays. The morphology of cancer cells was observed with inverted phase contrast microscope. The migration and invasion abilities were examined by xCELLigence real time cell analysis DP system and transwell assays. The expressions of poly (adenosine diphosphate-ribose) polymerase, C-Myc, Cyclin B1, cyclin-dependent kinases 1, N-cadherin, Vimentin, Active-ß-catenin, ß-catenin, p-glycogen synthase kinase 3ß (GSK-3ß) and GSK-3ß were determined by Western blotting assay. RESULTS: PPI sensitized TRAIL-induced decrease of viability, migration and invasion, as well as increase of apoptosis and cell cycle arrest of MG-63 and U-2 OS osteosarcoma cells. The synergistic effect of PPI with TRAIL in inhibiting the growth of osteosarcoma cells was at least partially realized through the inactivation of Wnt/ß-catenin signaling pathway. CONCLUSION: The combination of PPI and TRAIL is potentially a novel treatment strategy of osteosarcoma.


Assuntos
Neoplasias Ósseas , Diosgenina/análogos & derivados , Osteossarcoma , Humanos , Via de Sinalização Wnt , beta Catenina/genética , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Ligantes , Linhagem Celular Tumoral , Proliferação de Células , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Ciclo Celular , Apoptose , Fator de Necrose Tumoral alfa/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Movimento Celular
8.
Inorg Chem ; 63(11): 4925-4938, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38442008

RESUMO

Osteosarcoma cancers are becoming more common in children and young adults, and existing treatments have low efficacy and a very high mortality rate, making it pressing to search for new chemotherapies with high efficacy and high selectivity index. Copper complexes have shown promise in the treatment of osteosarcoma. Here, we report the synthesis, characterization, and anticancer activity of [Cu(N-N-Fur)(NO3)(H2O)] complex where N-N-Fur is (E)-N'-(2-hydroxy-3-methoxybenzylidene)furan-2-carbohydrazide. The [Cu(N-N-Fur)(NO3)(H2O)] complex was characterized via X-ray diffraction and electron spin resonance (ESR), displaying a copper center in a nearly squared pyramid environment with the nitrate ligand acting as a fifth ligand in the coordination sphere. We observed that [Cu(N-N-Fur)(NO3)(H2O)] binds to DNA in an intercalative manner. Anticancer activity on the MG-63 cell line was evaluated in osteosarcoma monolayer (IC50 2D: 1.1 ± 0.1 µM) and spheroids (IC50 3D: 16.3 ± 3.1 µM). Selectivity assays using nontumoral fibroblast (L929 cell line) showed that [Cu(N-N-Fur)(NO3)(H2O)] has selectivity index value of 2.3 compared to cis-diamminedichloroplatinum(II) (CDDP) (SI = 0.3). Additionally, flow cytometry studies demonstrated that [Cu(N-N-Fur)(NO3)(H2O)] inhibits cell proliferation and conveys cells to apoptosis. Cell viability studies of MG-63 spheroids (IC50 = 16.3 ± 3.1 µM) showed that its IC50 value is 4 times lower than for CDDP (IC50 = 65 ± 6 µM). Besides, we found that cell death events mainly occurred in the center region of the spheroids, indicating efficient transport to the microtumor. Lastly, the complex showed dose-dependent reductions in spheroid cell migration from 7.5 to 20 µM, indicating both anticancer and antimetastatic effects.


Assuntos
Nativos do Alasca , Neoplasias Ósseas , Osteossarcoma , Criança , Adulto Jovem , Humanos , Cobre/farmacologia , Ligantes , Osteossarcoma/tratamento farmacológico , Cisplatino
9.
Pediatr Blood Cancer ; 71(6): e30938, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520670

RESUMO

PURPOSE: Pepinemab, a humanized IgG4 monoclonal antibody, targets the SEMA4D (CD100) antigen to inhibit binding to its high-affinity receptors (plexin B1/PLXNB1, plexin B2/PLXNB2) and low-affinity receptor (CD72). SEMA4D blockade leads to increased cytotoxic T-cell infiltration, delayed tumor growth, and durable tumor rejection in murine tumor models. Pepinemab was well tolerated and improved T cell infiltration in clinical studies in adults with refractory tumors. SEMA4D was identified as a strong candidate proto-oncogene in a model of osteosarcoma. Based on these preclinical and clinical data, we conducted a phase 1/2 study to determine the recommended phase 2 dose (RP2D), pharmacokinetics, pharmacodynamics, and immunogenicity, of pepinemab in pediatric patients with recurrent/refractory solid tumors, and activity in osteosarcoma. EXPERIMENTAL DESIGN: Pepinemab was administered intravenously on Days 1 and 15 of a 28-day cycle at 20 mg/kg, the adult RP2D. Part A (phase 1) used a Rolling 6 design; Part B (phase 2) used a Simon 2-stage design in patients with osteosarcoma. Pharmacokinetics and target saturation were evaluated in peripheral blood. RESULTS: Pepinemab (20 mg/kg) was well tolerated and no dose-limiting toxicities were observed during Part A. There were no objective responses. Two patients with osteosarcoma achieved disease control and prolonged stable disease. Pepinemab pharmacokinetics were similar to adults. CONCLUSIONS: Pepinemab (20 mg/kg) is safe, well tolerated and resulted in adequate and sustained target saturation in pediatric patients. Encouraging disease control in two patients with osteosarcoma warrants further investigation with novel combination strategies to modulate the tumor microenvironment and antitumor immune response. CLINICAL TRIAL REGISTRY: This trial is registered as NCT03320330 at Clinicaltrials.gov. DISCLAIMER: The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Assuntos
Recidiva Local de Neoplasia , Neoplasias , Humanos , Adolescente , Criança , Feminino , Masculino , Adulto Jovem , Adulto , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neoplasias/tratamento farmacológico , Pré-Escolar , Anticorpos Monoclonais Humanizados/farmacocinética , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/patologia , Dose Máxima Tolerável , Resistencia a Medicamentos Antineoplásicos
10.
J Nanobiotechnology ; 22(1): 89, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433190

RESUMO

Despite advances in surgery and chemotherapy, the survival of patients with osteosarcoma (OS) has not been fundamentally improved over the last two decades. Microvesicles (MVs) have a high cargo-loading capacity and are emerging as a promising drug delivery nanoplatform. The aim of this study was to develop MVs as specifically designed vehicles to enable OS-specific targeting and efficient treatment of OS. Herein, we designed and constructed a nanoplatform (YSA-SPION-MV/MTX) consisting of methotrexate (MTX)-loaded MVs coated with surface-carboxyl Fe3O4 superparamagnetic nanoparticles (SPIONs) conjugated with ephrin alpha 2 (EphA2)-targeted peptides (YSAYPDSVPMMS, YSA). YSA-SPION-MV/MTX showed an effective targeting effect on OS cells, which was depended on the binding of the YSA peptide to EphA2. In the orthotopic OS mouse model, YSA-SPION-MV/MTX effectively delivered drugs to tumor sites with specific targeting, resulting in superior anti-tumor activity compared to MTX or MV/MTX. And YSA-SPION-MV/MTX also reduced the side effects of high-dose MTX. Taken together, this strategy opens up a new avenue for OS therapy. And we expect this MV-based therapy to serve as a promising platform for the next generation of precision cancer nanomedicines.


Assuntos
Neoplasias Ósseas , Micropartículas Derivadas de Células , Osteossarcoma , Animais , Humanos , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Efrinas , Metotrexato/administração & dosagem , Metotrexato/uso terapêutico , Osteossarcoma/tratamento farmacológico
11.
Drug Dev Res ; 85(2): e22167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38444106

RESUMO

Osteosarcoma (OS) is a primary malignant bone tumor and is prevalent in children, adolescents, and elderly individuals. It has the characteristics of high invasion and metastasis. Neoadjuvant chemotherapy combined with surgical resection is the most commonly used treatment for OS. However, the efficacy of OS is considerably diminished by chemotherapy resistance. In recent years, noncoding RNAs (ncRNAs), including microRNAs, long noncoding RNAs, and circular RNAs, are hot topics in the field of chemotherapy resistance research. Several studies have demonstrated that ncRNAs are substantially associated with chemoresistance in OS. Thus, the present study overviews the abnormally expressed ncRNAs in OS and the molecular mechanisms involved in chemoresistance, with an emphasis on their function in promoting or inhibiting chemoresistance. ncRNAs are expected to become potential therapeutic targets for overcoming drug resistance and predictive biomarkers in OS, which are of great significance for enhancing the therapeutic effect and improving the prognosis.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Adolescente , Criança , Idoso , Humanos , Resistencia a Medicamentos Antineoplásicos , MicroRNAs/genética , RNA não Traduzido/genética , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética
12.
Oncogene ; 43(13): 962-975, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355807

RESUMO

Osteosarcoma(OS) is a highly aggressive bone cancer for which treatment has remained essentially unchanged for decades. Although OS is characterized by extensive genomic heterogeneity and instability, RB1 and TP53 have been shown to be the most commonly inactivated tumor suppressors in OS. We previously generated a mouse model with a double knockout (DKO) of Rb1 and Trp53 within cells of the osteoblastic lineage, which largely recapitulates human OS with nearly complete penetrance. SKP2 is a repression target of pRb and serves as a substrate recruiting subunit of the SCFSKP2 complex. In addition, SKP2 plays a central role in regulating the cell cycle by ubiquitinating and promoting the degradation of p27. We previously reported the DKOAA transgenic model, which harbored a knock-in mutation in p27 that impaired its binding to SKP2. Here, we generated a novel p53-Rb1-SKP2 triple-knockout model (TKO) to examine SKP2 function and its potential as a therapeutic target in OS. First, we observed that OS tumorigenesis was significantly delayed in TKO mice and their overall survival was markedly improved. In addition, the loss of SKP2 also promoted an apoptotic microenvironment and reduced the stemness of DKO tumors. Furthermore, we found that small-molecule inhibitors of SKP2 exhibited anti-tumor activities in vivo and in OS organoids as well as synergistic effects when combined with a standard chemotherapeutic agent. Taken together, our results suggest that SKP2 inhibitors may reduce the stemness plasticity of OS and should be leveraged as next-generation adjuvants in this cancer.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Humanos , Camundongos , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Carcinogênese , Inibidor de Quinase Dependente de Ciclina p27/genética , Camundongos Knockout , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Microambiente Tumoral
13.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396762

RESUMO

Osteosarcoma is a bone cancer primarily affecting teenagers. It has a poor prognosis and diminished quality of life after treatment due to chemotherapy side effects, surgical complications and post-surgical osteoporosis risks. The sulphated polysaccharide fucoidan, derived from brown algae, has been a subject of interest for its potential anti-cancer properties and its impact on bone regeneration. This study explores the influence of crude, low-molecular-weight (LMW, 10-50 kDa), medium-molecular-weight (MMW, 50-100 kDa) and high-molecular-weight (HMW, >100 kDa) fractions from Sargassum filipendula, harvested from the Colombian sea coast, as well as crude fucoidan from Fucus vesiculosus, on a specific human osteoprogenitor cell type, human embryonic-derived mesenchymal stem cells. Fourier transform infrared spectroscopy coupled with attenuated total reflection (FTIR-ATR) results showed the highest sulphation levels and lowest uronic acid content in crude extract from F. vesiculosus. There was a dose-dependent drop in focal adhesion formation, proliferation and osteogenic differentiation of cells for all fucoidan types, but the least toxicity was observed for LMW and MMW. Transmission electron microscopy (TEM), JC-1 (5,50,6,60-tetrachloro-1,10,3,30-tetraethylbenzimi-dazolylcarbocyanine iodide) staining and cytochrome c analyses confirmed mitochondrial damage, swollen ER and upregulated autophagy due to fucoidans, with the highest severity in the case of F. vesiculosus fucoidan. Stress-induced apoptosis-like cell death by F. vesiculosus fucoidan and stress-induced necrosis-like cell death by S. filipendula fucoidans were also confirmed. LMW and MMW doses of <200 ng/mL were the least toxic and showed potential osteoinductivity. This research underscores the multifaceted impact of fucoidans on osteoprogenitor cells and highlights the delicate balance between potential therapeutic benefits and the challenges involved in using fucoidans for post-surgery treatments in patients with osteosarcoma.


Assuntos
Filipendula , Fucus , Osteossarcoma , Sargassum , Humanos , Adolescente , Sargassum/química , Fucus/química , Osteogênese , Qualidade de Vida , Polissacarídeos/farmacologia , Polissacarídeos/química , Osteossarcoma/tratamento farmacológico
14.
Biomolecules ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397382

RESUMO

Melatonin, an endogenous neurohormone produced by the pineal gland, has received increased interest due to its potential anti-cancer properties. Apart from its well-known role in the sleep-wake cycle, extensive scientific evidence has shown its role in various physiological and pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological mechanism is yet to be established, several pathways related to the regulation of cell cycle progression, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor primarily affects children and adolescents and is treated mainly by surgical and radio-oncological interventions, which has improved survival rates among affected individuals. Significant disadvantages to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell proliferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore, the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results from several in vitro and animal models. Nevertheless, if further explored, human trials remain a challenge that could shed light and support its utility as an adjunctive therapeutic modality for treating osteosarcoma.


Assuntos
Neoplasias Ósseas , Melatonina , Osteossarcoma , Animais , Adolescente , Criança , Humanos , Melatonina/farmacologia , Melatonina/uso terapêutico , Melatonina/metabolismo , Qualidade de Vida , Osteossarcoma/tratamento farmacológico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico
15.
Biomed Mater ; 19(2)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38324905

RESUMO

Osteosarcoma (OS) is a malignant bone neoplasm plagued by poor prognosis. Major treatment strategies include chemotherapy, radiotherapy, and surgery. Chemotherapy to treat OS has severe adverse effects due to systemic toxicity to healthy cells. A possible way to overcome the limitation is to utilize nanotechnology. Nanotherapeutics is an emerging approach in treating OS using nanoparticulate drug delivery systems. Surgical resection of OS leaves a critical bone defect requiring medical intervention. Recently, tissue engineered scaffolds have been reported to provide physical support to bone defects and aid multimodal treatment of OS. These scaffolds loaded with nanoparticulate delivery systems could also actively repress tumor growth and aid new bone formation. The rapid developments in nanotherapeutics and bone tissue engineering have paved the way for improved treatment efficacy for OS-related bone defects. This review focuses on current bifunctional nanomaterials-based tissue engineered (NTE) scaffolds that use novel approaches such as magnetic hyperthermia, photodynamic therapy, photothermal therapy, bioceramic and polymeric nanotherapeutics against OS. With further optimization and screening, NTE scaffolds could meet clinical applications for treating OS patients.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Engenharia Tecidual , Osteossarcoma/tratamento farmacológico , Tecidos Suporte , Neoplasias Ósseas/tratamento farmacológico , Sistemas de Liberação de Medicamentos
16.
Pediatr Hematol Oncol ; 41(4): 273-282, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38345039

RESUMO

Primary bone tumors in children and adolescents, while rare, pose significant challenges in diagnosis and management. Children treated for Ewing sarcoma and osteosarcoma are offered a 5-year follow-up program after end of treatment, including radiological surveillance of primary location of tumor and the lungs. There is no consensus regarding how often and how the children should be followed with radiological imaging. This retrospective descriptive study of 69 patients (34 with Ewing sarcoma and 35 with osteosarcoma) investigated the consequences of abnormal findings in 1279 follow-up images. Nine relapses were detected, 4 in the Ewing group (3 local and 1 pulmonary) and 5 in the osteosarcoma group (1 local and 4 pulmonary). Of these, only two patients exhibited symptomatic relapses, with the remainder identified through imaging. The positive predictive value for relapse detection was 0.44 in the Ewing group, and 0.5 in the osteosarcoma group. In the Ewing sarcoma patient image follow-up program, the probability of anomaly detection was 12% (95% CI, 10-15). For osteosarcoma patients, the likelihood was 6% (95% CI, 4-8). Our data indicates that abnormal findings on follow-up images rarely represents relapse of tumor. As the surveillance protocol differs between the patient groups, wherein Ewing sarcoma patients primarily are monitored through MRI while osteosarcoma patients are predominantly tracked via X-rays, there is an increased occurrence of incidental findings in the first group. However, it is imperative to interpret imaging data in conjunction with clinical information, avoiding isolated reliance on imaging results when making treatment decisions.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Sarcoma de Ewing , Criança , Adolescente , Humanos , Sarcoma de Ewing/terapia , Sarcoma de Ewing/tratamento farmacológico , Estudos Retrospectivos , Recidiva Local de Neoplasia , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/tratamento farmacológico , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/tratamento farmacológico , Recidiva
17.
Clin Transl Med ; 14(2): e1586, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372422

RESUMO

BACKGROUND: Osteosarcoma (OSA) presents a clinical challenge and has a low 5-year survival rate. Currently, the lack of advanced stratification models makes personalized therapy difficult. This study aims to identify novel biomarkers to stratify high-risk OSA patients and guide treatment. METHODS: We combined 10 machine-learning algorithms into 101 combinations, from which the optimal model was established for predicting overall survival based on transcriptomic profiles for 254 samples. Alterations in transcriptomic, genomic and epigenomic landscapes were assessed to elucidate mechanisms driving poor prognosis. Single-cell RNA sequencing (scRNA-seq) unveiled genes overexpressed in OSA cells as potential therapeutic targets, one of which was validated via tissue staining, knockdown and pharmacological inhibition. We characterized changes in multiple phenotypes, including proliferation, colony formation, migration, invasion, apoptosis, chemosensitivity and in vivo tumourigenicity. RNA-seq and Western blotting elucidated the impact of squalene epoxidase (SQLE) suppression on signalling pathways. RESULTS: The artificial intelligence-derived prognostic index (AIDPI), generated by our model, was an independent prognostic biomarker, outperforming clinicopathological factors and previously published signatures. Incorporating the AIDPI with clinical factors into a nomogram improved predictive accuracy. For user convenience, both the model and nomogram are accessible online. Patients in the high-AIDPI group exhibited chemoresistance, coupled with overexpression of MYC and SQLE, increased mTORC1 signalling, disrupted PI3K-Akt signalling, and diminished immune infiltration. ScRNA-seq revealed high expression of MYC and SQLE in OSA cells. Elevated SQLE expression correlated with chemoresistance and worse outcomes in OSA patients. Therapeutically, silencing SQLE suppressed OSA malignancy and enhanced chemosensitivity, mediated by cholesterol depletion and suppression of the FAK/PI3K/Akt/mTOR pathway. Furthermore, the SQLE-specific inhibitor FR194738 demonstrated anti-OSA effects in vivo and exhibited synergistic effects with chemotherapeutic agents. CONCLUSIONS: AIDPI is a robust biomarker for identifying the high-risk subset of OSA patients. The SQLE protein emerges as a metabolic vulnerability in these patients, providing a target with translational potential.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Esqualeno Mono-Oxigenase , Humanos , Inteligência Artificial , Biomarcadores , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Fosfatidilinositol 3-Quinases , Prognóstico , Proteínas Proto-Oncogênicas c-akt , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo
18.
Int J Pharm ; 653: 123932, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38387818

RESUMO

Mastering new and efficient ways to obtain successful drug delivery systems (DDS) with controlled release became a paramount quest in the scientific community. Increase of malignant bone tumors and the necessity to optimize an approach of localized drug delivery require research to be even more intensified. Octacalcium phosphate (OCP), with a number of advantages over current counterparts is extensively used in bone engineering. The aim of the present research was to synthesize bioactive and biocompatible doxorubicin (DOX) containing OCP particles. DOX-OCP was successfully obtained in situ in an exhaustive range of added drug (1-20 wt%, theoretical loading). Based on XRD, above 10 wt% of DOX, OCP formation was inhibited and the obtained product was low crystalline α-TCP. In-vitro drug release was performed in pH 7.4 and 6.0. In both pH environments DOX had a continuous release over six weeks. However, the initial drug burst for pH 7.4, in the first 24 h, ranged from 15.9 ± 1.3 % to 33.5 ± 12 % and for pH 6.0 23.7 ± 1.5 % to 36.2 ± 12 %.The DOX-OCP exhibited an inhibitory effect on viability of osteosarcoma cell lines MG63, U2OS and HOS. In contrast, MC3T3-E1 cells (IC50 > 0.062 µM) displayed increased viability and proliferation from 3rd to 7th day. Testing of the DDS on ferroptotic markers (CHAC1, ACSL4 and PTGS2) showed that OCP-DOX does not induce ferroptotic cell death. Moreover, the evaluation of protein levels of cleaved PARP, by western blotting analysis, corroborated that apoptosis is the main pathway of programmed cell death in osteosarcoma cells induced by DOX-OCP.


Assuntos
Neoplasias Ósseas , Fosfatos de Cálcio , Osteossarcoma , Humanos , Preparações de Ação Retardada/uso terapêutico , Liberação Controlada de Fármacos , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Osteossarcoma/tratamento farmacológico , Morte Celular
19.
Cancer Lett ; 586: 216708, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38336287

RESUMO

Intratumor heterogeneity is one of the major features of cancers, leading to aggressive disease and treatment failure. Cancer stem-like cells (CSCs) are believed to give rise to the heterogeneous cell types within tumors. Hence, understanding the regulatory mechanism underlying the recurrence process of heterogeneous tumor by CSCs could facilitate the development of CSC-targeted therapies. Here, utilizing single-cell transcriptomics, we present the molecular profile of osteosarcoma CSCs-derived heterogeneous tumors consisting of CSC clusters, osteoprogenitor and differentiated cell types, such as pre-osteoblasts, osteoblasts and chondroblasts. Furthermore, by constructing the comprehensive map of modulated genes during CSCs self-renewal and differentiation, we identify RAN exhibiting specific peak expression in osteosarcoma CSCs clusters which is transcriptionally up-regulated by MYBL2. Functionality, MYBL2-RAN pathway promotes the CSCs self-renewal by enhancing the nuclear accumulation of MYC protein, which in turn boosts the overexpression of RAN as a positive feedback. Importantly, blockage of MYBL2-RAN pathway sensitizes CSCs to cisplatin treatment and synergistically enhanced the cisplatin-induced cytotoxicity. Both MYBL2 and RAN are highly expressed in clinical osteosarcoma tissues which indicate poor prognosis. Collectively, our study provides advanced insights into the regeneration process of heterogeneous tumor originating from CSCs and highlights the MYBL2-RAN pathway as a promising target for CSC-based therapy in osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Neoplasias Ósseas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Células-Tronco Neoplásicas/metabolismo , Osteossarcoma/tratamento farmacológico , Transativadores/metabolismo , Regulação para Cima
20.
Sci Rep ; 14(1): 3577, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347067

RESUMO

Osteosarcoma (OS) is the most common primary malignant tumor of bone. Remodelin, an inhibitor of the N (4)-Acetylcytidine (ac4C) acetylation modifying enzyme N-acetyltransferase 10 (NAT10), has been shown to have therapeutic effects on cancer in several studies, and our previous studies have confirmed the inhibitory effect of Remodelin on OS cells, however, the mechanism of action has not yet been elucidated. We used network pharmacological analysis to quantify the therapeutic targets of Remodelin against OS. acRIP-seq and RNA-seq were performed to investigate the inhibitory activity of Remodelin on acetylation and its effect on the transcriptome after intervening in OS cells U2OS with Remodelin in vitro. Key target genes were deduced based on their pharmacological properties, combined with network pharmacology results and sequencing results. Finally, the deduced target genes were validated with vitro experiments. Network pharmacological analysis showed that 2291 OS-related target genes and 369 Remodelin-related target genes were obtained, and 116 overlapping genes were identified as Remodelin targets for OS treatment. Sequencing results showed that a total of 13,736 statistically significant ac4C modification peaks were detected by acRIP-seq, including 6938 hypoacetylation modifications and 6798 hyperacetylation modifications. A total of 2350 statistically significant mRNAs were detected by RNA-seq, of which 830 were up-regulated and 1520 were down-regulated. Association analyses identified a total of 382 genes that were Hypoacetylated-down, consistent with inhibition of mRNA acetylation and expression by Remodelin. Five genes, CASP3, ESR2, FGFR2, IGF1 and MAPK1, were identified as key therapeutic targets of Remodelin against OS. Finally, in vitro experiments, CCK-8 and qRT-PCR demonstrated that Remodelin indeed inhibited the proliferation of OS cells and reduced the expression of three genes: ESR2, IGF1, and MAPK1. In conclusion, ESR2, IGF1 and MAPK1 were identified as key therapeutic targets of Remodelin against OS. This reveals the target of Remodelin's pharmacological action on OS and provides new ideas for the treatment of OS.


Assuntos
Neoplasias Ósseas , Hidrazonas , Osteossarcoma , Tiazóis , Humanos , Farmacologia em Rede , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Homologia de Genes , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...